
Chapter 10

The SPARC Language

This chapter presents SPARC: a parallel and functional language used throughout the book
for specifying algorithms.

SPARC is a “strict” functional language similar to the ML class of languages such as
Standard ML or SML, Caml, and F#. In pseudo code, we sometimes use mathematical no-
tation, and even English descriptions in addition to SPARC syntax. This chapter describes
the basic syntax and semantics of SPARC; we introduce additional syntax as needed in the
rest of the book.

1 Syntax and Semantics of SPARC

This section describes the syntax and the semantics of the core subset of the SPARC lan-
guage. The term syntax refers to the structure of the program itself, whereas the term se-
mantics refers to what the program computes. Since we wish to analyze the cost of algo-
rithms, we are interested in not just what algorithms compute, but how they compute. Se-
mantics that capture how algorithms compute are called operational semantics, and when
augmented with specific costs, cost semantics. Here we describe the syntax of SPARC and
present an informal description of its operational semantics. We will cover the cost seman-
tics of SPARC in Cost Models Chapter . While we focus primarily on the core subset of
SPARC, we also describe some syntactic sugar that makes it easier to read or write code
without adding any real power. Even though SPARC is a strongly typed language, for our
purposes in this book, we use types primarily as a means of describing and specifying the
behavior of our algorithms. We therefore do not present careful account of SPARC’s type
system.

The definition below shows the syntax of SPARC. A SPARC program is an expression,
whose syntax, describe the computations that can be expressed in SPARC. When evaluated
an expression yield a value. Informally speaking, evaluation of an expression proceeds
involves evaluating its sub-expressions to values and then combining these values to com-
pute the value of the expression. SPARC is a strongly typed language, where every closed

54

1. SYNTAX AND SEMANTICS OF SPARC 55

expression, which have no undefined (free) variables, evaluates to a value or runs forever.

Definition 10.1 (SPARC expressions).

Identifier id := . . .
Variables x := id
Type Constructors tycon := id
Data Constructors dcon := id
Patterns p := x variable

| (p) parenthesis
| p1, p2 pair
| dcon (p) data pattern

Types τ := Z integers
| B booleans
| τ [∗τ]+ products
| τ → τ functions
| tycon type constructors
| dty data types

Data Types dty := dcon [of τ]
| dcon [of τ] | dty

Values v := 0 | 1 | . . . integers
| −1 | −2 | . . . integers
| true | false booleans
| not | . . . unary operations
| and | plus | . . . binary operations
| v1, v2 pairs
| (v) parenthesis
| dcon (v) constructed data
| lambda p . e lambda functions

Expression e := x variables
| v values
| e1 op e2 infix operations
| e1, e2 sequential pair
| e1||e2 parallel pair
| (e) parenthesis
| case e1 [| p => e2]+ case
| if e1 then e2 else e3 conditionals
| e1 e2 function application
| let b+ in e end local bindings

Operations op := + | − | ∗ | − . . .
Bindings b := x(p) = e bind function

| p = e bind pattern
| type tycon = τ bind type
| type tycon = dty bind datatype

Identifiers. In SPARC, variables, type constructors, and data constructors are given a
name, or an identifier. An identifier consist of only alphabetic and numeric characters

56 CHAPTER 10. THE SPARC LANGUAGE

(a-z, A-Z, 0-9), the underscore character (“ ”), and optionally end with some number of
“primes”. Example identifiers include, x′, x1, xl, myVar , myType , myData , and my data .

Program variables, type constructors, and data constructors are all instances of iden-
tifiers. During evaluation of a SPARC expression, variables are bound to values, which
may then be used in a computation later. In SPARC, variable are bound during function
application, as part of matching the formal arguments to a function to those specified by
the application, and also by let expressions. If, however, a variable appears in an expres-
sion but it is not bound by the expression, then it is free in the expression. We say that an
expression is closed if it has no free variables.

Types constructors give names to types. For example, the type of binary trees may be
given the type constructor btree. Since for the purposes of simplicity, we rely on mathe-
matical rather than formal specifications, we usually name our types behind mathematical
conventions. For example, we denote the type of natural numbers by N, the type of integers
by Z, and the type of booleans by B.

Data constructors serve the purpose of making complex data structures. By conven-
tion, we will capitalize data constructors, while starting variables always with lowercase
letters.

Patterns. In SPARC, variables and data constructors can be used to construct more com-
plex patterns over data. For example, a pattern can be a pair (x, y), or a triple of vari-
ables (x, y, z), or it can consist of a data constructor followed by a pattern, e.g., Cons(x) or
Cons(x, y). Patterns thus enable a convenient and concise way to pattern match over the
data structures in SPARC.

Built-in Types. Types of SPARC include base types such as integers Z, booleans B, prod-
uct types such as τ1 ∗ τ2 . . . τn, function types τ1 → τ2 with domain τ1 and range τ2, as well
as user defined data types.

Data Types. In addition to built-in types, a program can define new data types as a
union of tagged types, also called variants, by “unioning” them via distinct data con-
structors. For example, the following data type defines a point as a two-dimensional or a
three-dimensional coordinate of integers.

type point = PointTwo of Z ∗ Z
| Point3D of Z ∗ Z ∗ Z

Recursive Data Types. In SPARC recursive data types are relatively easy to define and
compute with. For example, we can define a point list data type as follows

type plist = Nil | Cons of point ∗ plist .

1. SYNTAX AND SEMANTICS OF SPARC 57

Based on this definition the list

Cons(PointTwo(0, 0),
Cons(PointTwo(0, 1),

Cons(PointTwo(0, 2),Nil)))

defines a list consisting of three points.

Exercise 10.1 (Booleans). Some built-in types such as booleans, B, are in fact syntactic sugar
and can be defined by using union types as follows. Describe how you can define booleans
using data types of SPARC.

Solution. Booleans can be defined as follows.

type myBool = myTrue | myFalse

Option Type. Throughout the book, we use option types quite frequently. Option types
for natural numbers can be defined as follows.

type option = None | Some of N

Similarly, we can define option types for integers.

type intOption = INone | ISome of Z

Note that we used a different data constructor for naturals. This is necessary for type
inference and type checking. Since, however, types are secondary for our purposes in this
book, we are sometimes sloppy in our use of types for the sake of simplicity. For example,
we use throughout None and Some for option types regardless of the type of the contents.

Values. Values of SPARC, which are the irreducible units of computation include natural
numbers, integers, Boolean values true and false, unary primitive operations, such as
boolean negation not, arithmetic negation -, as well as binary operations such as logical
and and and arithmetic operations such as +. Values also include constant-length tuples,
which correspond to product types, whose components are values. Example tuples used
commonly through the book include binary tuples or pairs, and ternary tuples or triples.
Similarly, data constructors applied to values, which correspond to sum types, are also
values.

As a functional language, SPARC treats all function as values. The anonymous function
lambda p. e is a function whose arguments are specified by the pattern p, and whose body
is the expression e.

Example 10.1.

• The function lambda x.x+ 1 takes a single variable as an argument and adds one to
it.

• The function lambda (x, y). x takes a pairs as an argument and returns the first com-
ponent of the pair.

58 CHAPTER 10. THE SPARC LANGUAGE

Expressions. Expressions, denoted by e and variants (with subscript, superscript, prime),
are defined inductively, because in many cases, an expression contains other expressions.
Expressions describe the computations that can be expressed in SPARC. Evaluating an ex-
pression via the operational semantics of SPARC produce the value for that expression.

Infix Expressions. An infix expression, e1 op e2, involve two expressions and an infix
operator op. The infix operators include + (plus), − (minus), ∗ (multiply), / (divide), <
(less), > (greater), or, and and. For all these operators the infix expression e1 op e2 is just
syntactic sugar for f(e1, e2) where f is the function corresponding to the operator op (see
parenthesized names that follow each operator above).

We use standard precedence rules on the operators to indicate their parsing. For exam-
ple in the expression

3 + 4 * 5

the ∗ has a higher precedence than + and therefore the expression is equivalent to 3+(4∗5).

Furthermore all operators are left associative unless stated otherwise, i.e., that is to say
that a op1 b op2 c = (a op1 b) op2 c if op1 and op2 have the same precedence.

Example 10.2. The expressions 5− 4 + 2 evaluates to (5− 4) + 2 = 3 not 5− (4 + 2) = −1,
because − and + have the same precedence.

Sequential and Parallel Composition. Expressions include two special infix operators:
“,” and ||, for generating ordered pairs, or tuples, either sequentially or in parallel.

The comma operator or sequential composition as in the infix expression (e1, e2), eval-
uates e1 and e2 sequentially, one after the other, and returns the ordered pair consisting of
the two resulting values. Parenthesis delimit tuples.

The parallel operator or parallel composition “||”, as in the infix expression (e1 || e2),
evaluates e1 and e2 in parallel, at the same time, and returns the ordered pair consisting of
the two resulting values.

The two operators are identical in terms of their return values. However, we will see
later, their cost semantics differ: one is sequential and the other parallel. The comma and
parallel operators have the weakest, and equal, precedence.

Example 10.3.

• The expression

lambda (x, y). (x ∗ x, y ∗ y)

is a function that take two arguments x and y and returns a pair consisting of the
squares x and y.

1. SYNTAX AND SEMANTICS OF SPARC 59

• The expression

lambda (x, y). (x ∗ x || y ∗ y)

is a function that take two arguments x and y and returns a pair consisting of the
squares x and y by squaring each of x and y in parallel.

Case Expressions. A case expression such as

case e1
| Nil⇒ e2
| Cons (x, y)⇒ e3

first evaluates the expression e1 to a value v1, which must return data type. It then matches
v1 to one of the patterns, Nil or Cons (x, y) in our example, binds the variable if any in
the pattern to the respective sub-values of v1, and evaluates the “right hand side” of the
matched pattern, i.e., the expression e2 or e3.

Conditionals. A conditional or an if-then-else expression, if e1 then e2 else e3, eval-
uates the expression e1, which must return a Boolean. If the value of e1 is true then the
result of the if-then-else expression is the result of evaluating e2, otherwise it is the result
of evaluating e3. This allows for conditional evaluation of expressions.

Function Application. A function application, e1 e2, applies the function generated by
evaluating e1 to the value generated by evaluating e2. For example, lets say that e1 evalu-
ates to the function f and e2 evaluates to the value v, then we apply f to v by first match-
ing v to the argument of f , which is pattern, to determine the values of each variable in
the pattern. We then substitute in the body of f the value of each variable for the variable.
To substitute a value in place of a variable x in an expression e, we replace each instance
of x with v.

For example if function lambda (x, y). e is applied to the pair (2,3) then x is given
value 2 and y is given value 3. Any free occurrences of the variables x and y in the expres-
sion ewill now be bound to the values 2 and 3 respectively. We can think of function appli-
cation as substituting the argument (or its parts) into the free occurrences of the variables in
its body e. The treatment of function application is why we call SPARC a strict language.
In strict or call-by-value languages, the argument to the function is always evaluated to
a value before applying the function. In contrast non-strict languages wait to see if the
argument will be used before evaluating it to a value.

Example 10.4.

• The expression

(lambda (x, y). x/y) (8, 2)

evaluates to 4 since 8 and 2 are bound to x and y, respectively, and then divided.

60 CHAPTER 10. THE SPARC LANGUAGE

• The expression

(lambda (f, x). f(x, x)) (plus, 3)

evaluates to 6 because f is bound to the function plus , x is bound to 3, and then plus
is applied to the pair (3, 3).

• The expression

(lambda x. (lambda y. x+ y)) 3

evaluates to a function that adds 3 to any integer.

Bindings. The let expression,

let b+in e end,

consists of a sequence of bindings b+, which define local variables and types, followed
by an expression e, in which those bindings are visible. In the syntax for the bindings,
the superscript + means that b is repeated one or more times. Each binding b is either a
variable binding, a function binding, or a type binding. The let expression evaluates to the
result of evaluating e given the variable bindings defined in b.

A function binding, x(p) = e, consists of a function name, x (technically a variable), the
arguments for the function, p, which are themselves a pattern, and the body of the function,
e.

Each type binding equates a type to a base type or a data type.

Example 10.5. Consider the following let expression.

let
x = 2 + 3
f(w) = (w ∗ 4, w − 2)
(y, z) = f(x− 1)

in
x+ y + z

end

The first binding the variable x to 2 + 3 = 5; The second binding defines a function
f(w) which returns a pair; The third binding applies the function f to x− 1 = 4 returning
the pair (4 ∗ 4, 4 − 2) = (16, 2), which y and z are bound to, respectively (i.e., y = 16 and
z = 2. Finally the let expressions adds x, y, z and yields 5 + 16 + 2. The result of the
expression is therefore 23.

Note. Be careful about defining which variables each binding can see, as this is important
in being able to define recursive functions. In SPARC the expression on the right of each
binding in a let can see all the variables defined in previous variable bindings, and can

1. SYNTAX AND SEMANTICS OF SPARC 61

see the function name variables of all binding (including itself) within the let. Therefore
the function binding

x(p) = e

is not equivalent to the variable binding

x = lambda p.e,

because in the prior x can be used in e and in the later it cannot. Function bindings therefore
allow for the definition of recursive functions. Indeed they allow for mutually recursive
functions since the body of function bindings within the same let can reference each other.

Example 10.6. The expression

let
f(i) = if (i < 2) then i else i ∗ f(i− 1)

in
f(5)

end

will evaluate to the factorial of 5, i.e., 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1, which is 120.

Example 10.7. The piece of code below illustrates an example use of data types and higher-
order functions.

let
type point = PointTwo of Z ∗ Z

| PointThree of Z ∗ Z ∗ Z
injectThree (PointTwo (x, y)) = PointThree (x, y, 0)
projectTwo (PointThree (x, y, z)) = PointTwo (x, y)
compose f g = f g
p0 = PointTwo (0, 0)
q0 = injectThree p0
p1 = (compose projectTwo injectThree) p0

in
(p0, q0)

end

The example code above defines a point as a two (consisting of x and y axes) or three
dimensional (consisting of x, y, and z axes) point in space. The function injectThree takes
a 2D point and transforms it to a 3D point by mapping it to a point on the z = 0 plane.
The function projectTwo takes a 3D point and transforms it to a 2D point by dropping its
z coordinate. The function compose takes two functions f and g and composes them. The
function compose is a higher-order function, since id operates on functions.

The point p0 is the origin in 2D. The point q0 is then computed as the origin in 3D. The
point p1 is computed by injecting p0 to 3D and then projecting it back to 2D by dropping
the z components, which yields again p0. In the end we thus have p0 = p1 = (0, 0).

62 CHAPTER 10. THE SPARC LANGUAGE

Example 10.8. The following SPARC code, which defines a binary tree whose leaves and
internal nodes holds keys of integer type. The function find performs a lookup in a given
binary-search tree t, by recursively comparing the key x to the keys along a path in the tree.

type tree = Leaf of Z | Node of (tree,Z, tree)
find (t, x) =
case t
| Leaf y ⇒ x = y
| Node (left , y, right)⇒

if x = y then
return true

else if x < y then
find (left , x)

else
find (right , x)

Remark.
The definition

lambda x . (lambda y . f(x, y))

takes a function f of a pair of arguments and converts it into a function that takes one of the
arguments and returns a function which takes the second argument. This technique can
be generalized to functions with multiple arguments and is often referred to as currying,
named after Haskell Curry (1900-1982), who developed the idea. It has nothing to do with
the popular dish from Southern Asia, although that might be an easy way to remember the
term.

	The Lambda Calculus
	Syntax and Semantics
	Parallelism and Reduction Order

